다층 퍼셉트론은 회귀 작업에 사용할 수 있다. 값 하나를 예측하는 데 출력 뉴런이 하나만 필요하다. 이 뉴런의 출력이 예측된 값이다. 다변량 회귀(multivariate regression)에서는 (즉, 동시에 여러 값을 예측하는 경우) 출력 차원마다 출력 뉴런이 하나씩 필요하다. 일반적으로 회귀용 다층 퍼셉트론을 만들 때 출력 뉴런에 활성화 함수를 사용하지 않고 어떤 범위의 값도 출력되도록 한다. 하지만 출력이 항상 양수여야 한다면 출력층에 ReLU 활성화 함수를 사용할 수 있다. 또는 softplus 활성화 함수를 사용할 수 있다. 마지막으로 어떤 범위 안의 값을 예측 하고 싶다면 로지스틱 함수나 하이퍼볼릭 탄젠트 함수를 사용하고 레이블의 스케일을 적절한 범위로 조정할 수 있다. 로지스틱 함수는 0에..